

CLASSICALU

Mathematics for Every Teacher

Lecture 5: Existence of Irrational Numbers

with Jake Tawney

Outline:

Are all numbers rational? Existence of Irrational Numbers

- Can all numbers be made from the four operations of addition, subtraction, division, and multiplication?
 - The reasonable answer is yes, but there is a fly in the ointment.
 - This is the right triangle. Can "c" be written as a ratio of a to b (a/b) where a and b are whole numbers?
 - Is "c" a rational number?
 - $c^2 = 2$, can c be written as the ratio of whole numbers?
 - Suppose that $c = \frac{m}{n}$ in lowest terms.

• So
$$(\frac{m}{n})^2 = 2$$

$$\frac{m^2}{2}$$

$$\frac{1}{n^2}$$
 - 2

- $m^2 = 2n^2$
- Claim: m^2 is even
- Claim: *m* is even
- m = 2k

•
$$(2k)^2 = 2n^2$$

- $4k^2 = 2n^2$
- $2k^2 = n^2$
- Claim: n^2 is even, and so is n.
- Claims: *m* is even and *n* is even?
 - But if m/n is in lowest terms, then they cannot both be even.
- When we reach a contradiction, we prove something is false.
 When I reach nonsense I go back and look at the last time I made an assumption that was no proven, which was the original assertion that c could be written as the ratio of whole numbers. This is a proof by contradiction.
- **Theorem:** There are numbers that exist that are not rational. That is, there are numbers that cannot be written as a fraction of integers. One such number is $\sqrt{2}$.
 - The only square roots that are rational are those built from square numbers.

- There is a claim that rational numbers all have decimals that repeat or terminate. The opposite claim is that irrational numbers neither repeat nor terminate.
 - The definition of irrational numbers is a number that cannot be written as a ratio of whole numbers.
 - $\circ~$ It is true that their decimal expansions that does not repeat or terminate.
- Favorite two irrational numbers:
 - 0.1010010001...There is no repeating cycle of decimals, and yet this has a tremendous pattern.
 - 0.12345678910111213141516...This does not repeat or terminate, and yet the numbers have a pattern such that if you had a finite expansion you could determine the next digit.